CS 4530: Fundamentals of Software Engineering
Module 1.2: Capturing User Requirements

Adeel Bhutta, Jan Vitek and Mitch Wand
Khoury College of Computer Sciences

© 2023 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson

* At the end of this lesson, you should be able to

* Explain the overall purposes of requirements analysis

* Enumerate and explain 3 major dimensions of risk in Requirements Analysis

* Explain the difference between functional and non-functional requirements,
and give examples of each

* Explain the notion of a user story, with examples. (including conditions of
satisfaction)

Overall question:
How to make sure we are building the right thing

LIGLL

How the customer How the project How the analyst Huwﬂupmnrm Whmmummnﬂ
explainened it. leader understood it. designed it.
Requirements Planning &

Implementation

Analysis Design

Why is requirements analysis hard?

Do users know what they want?

(— | Problems of Y

a0 Do users know what we don’t know?

G derstandi

C) understanding Do we know who are users even are?
What are we building?
PrOblemS Of Scope What non-functional quality attributes

are included?

PrOblemS Of VOIat|I|ty Changing requirements over time

Soliciting
Requirements

Option 1: Users tell developers what
they want

* Client determines the
problem and the solution

e Requirements might be
formally provided in the form
of a contract or statement of
work

* Client might provide all
requirements, or just some
subset (e.g. “must be HIPPA
compliant”)

Soliciting
Requirements

Option 2: The developers try to figure out what the user really wants
or needs.

Interview users, ask questions about their problems, propose
potential solutions, examine those solutions

Embed your client in your design team, or better yet, become an
anthropologist in your client’s environment

Build requirements documents that demonstrate your
understanding of the requirements, iterate

Empowers your team with credibility and authority

Always need to
document the
requirements

 Documentation helps our whole
team make sure they are building
the right thing

* Documentation can help specify
implicit requirements

e Documentation can also serve as
an artifact to iterate on with a
client

Documentation should also capture non-
functional requirements

* Qualities that reflect the execution of the system
* Accessibility
Availability
Capacity
Efficiency
Performance
Privacy
Response Time
Security
Supportability
Usability

* Example: “A 4-core server with 16 GB RAM should be able to service at
least 200 simultaneous clients with less than 300ms latency”

Documentation should also capture non-
functional requirements (2)

* Qualities that reflect the evolution of the system
» Testability
* Maintainability
* Extensibility
 Scalability

* Example: “A 3@ party component built conforming to the API defined

in the Canvas LMS specification can create, modify, and delete
assignments on behalf of an authenticated user”

e Define all expected behaviors under all
expected conditions

 Works best when domain is well-
understood

Formal Specifications is
I one way to document
the requirements

[Search] [txt

html|pdf |ps|with errata|bibtex] [Tracker] [WG] [Emaill [Diff1] 1.2 Requirements

From: draft-ietf-http-vll-spec-rev-06 Draft Standard
Obsoleted by: 7230, 7231, 7232, 7233, 7234, 7235 Errata exist
Updated by: 2817, 5785, 6266, 6585
Network Working Group R. Fielding
Request for Comments: 2616 UC Irvine
Obsoletes: 2068 J. Gettys
Category: Standards Track Compaq/W3C
J. Mogul
Compaq
H. Frystyk
W3C/MIT
L. Masinter
Xerox
P. Leach
Microsoft
T. Berners-Lee
W3C/MIT
June 1999

Hypertext Transfer Protocol -- HTTP/1.1
Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
0fficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice
Copyright (C) The Internet Society (1999). All Rights Reserved.
Abstract

The Hypertext Transfer Protocol (HTTP) is an application-level
protocol for distributed, collaborative, hypermedia information
systems. It is a generic, stateless, protocol which can be used for
many tasks beyond its use for hypertext, such as name servers and
distributed object management systems, through extension of its
request methods, error codes and headers [47]. A feature of HTTP is
the typing and negotiation of data representation, allowing systems
to be built independently of the data being transferred.

HTTP has been in use by the World-Wide Web global information
initiative since 1990. This specification defines the protocol
referred to as "HTTP/1.1", and is an update to RFC 2068 [33].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"'SHoULD", '"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [34].

An implementation is not compliant if it fails to satisfy one or more
of the MUST or REQUIRED level requirements for the protocols it
implements. An implementation that satisfies all the MUST or REQUIRED
level and all the SHOULD level requirements for its protocols is said
to be "unconditionally compliant"; one that satisfies all the MUST
level requirements but not all the SHOULD level requirements for its
protocols is said to be "conditionally compliant."

1.3 Terminology

This specification uses a number of terms to refer to the roles
played by participants in, and objects of, the HTTP communication.

connection
A transport layer virtual circuit established between two programs
for the purpose of communication.

message
The basic unit of HTTP communication, consisting of a structured
sequence of octets matching the syntax defined in section 4 and
transmitted via the connection.

request
An HTTP request message, as defined in section 5.

response
An HTTP response message, as defined in section 6.

10

User Stories document requirements from a
user’s point of view

Specifying what should happen, for whom, and why

As a <role> | can <capability>,
so that <receive benefit>

Conditions of Satisfaction:

Given <interaction with software,
state of environment>, | expect
<behavior and side effects>

11

Writing User Stories: INVEST

* Independent

* Negotiable

 VValuable (has value to client)
e Estimatable

e Small

e Testable

As a <role> | can <capability>,
so that <receive benefit>

12

Example: a Transcript database
User Story

e User story: tells what the user wants to do, and
why.

* Example:

13

Satisfaction Conditions

e Satisfaction Conditions list the capabilities the user
expects, in the user’s terms.

* Example:

My database should allow me to do the
following:

Add a new student to the database

Add a new student with the same name as an
existing student.

Retrieve the transcript for a student

Delete a student from the database

Add a new grade for an existing student

Find out the grade that a student got in a course
that they took

User Stories may be Prioritized

* Essential means the project is useless without it.

* Desirable means the project is less usable without it, but is still
usable.

* Extension describes a User story or COS that is desirable, but may not
be achievable within the scope of the project.

* Minimum Viable Product (MVP)

e A brief tutorial can be found on course website!

15

Non-Functional Requirements:

* What other properties might a customer want to know about
the product?
 How quickly can a transcript be retrieval? (Performance)
 How many student transcripts can our system store? (Scalability)

* How long did | spend on the phone with support to set up the
software? (Usability)

» After my system is setup, is the access controlled at all? (Security)
* Are these any times when | can’t use this system? (Availability)

16

Requirements: Which to pick?

* There are four knobs you can adjust when negotiating requirements:

* Project scope

* Project duration
* Project quality
* Project cost

* Usually cost is most constrained: you have a budget to spend, and you
have a headcount of developers to pay

* Determining feasible scope, timeline and maximizing quality is the
subject of much software engineering research, see next lesson

17

Learning Goals for this Lesson

* At the end of this lesson, you should be able to

* Explain the overall purposes of requirements analysis

* Enumerate and explain 3 major dimensions of risk in Requirements Analysis

* Explain the difference between functional and non-functional requirements,
and give examples of each

* Explain the notion of a user story, with examples. (including conditions of
satisfaction)

18

Lesson 1.2 Activity: User Stories

* Please review the tutorial for writing user stories and conditions
of satisfaction (with priorities).

* Instructions for the related activity can also be found on course
website (module01 page).

19

	CS 4530: Fundamentals of Software Engineering�Module 1.2: Capturing User Requirements
	Learning Goals for this Lesson
	Overall question:�How to make sure we are building the right thing
	Why is requirements analysis hard?
	Soliciting Requirements
	Soliciting Requirements
	Always need to document the requirements
	Documentation should also capture non-functional requirements
	Documentation should also capture non-functional requirements (2)
	Formal Specifications is one way to document the requirements
	User Stories document requirements from a user’s point of view
	Writing User Stories: INVEST
	Example: a Transcript database�User Story
	Satisfaction Conditions
	User Stories may be Prioritized
	Non-Functional Requirements:
	Requirements: Which to pick?
	Learning Goals for this Lesson
	Lesson 1.2 Activity: User Stories

